Wednesday, 22 May 2019

Is Conference Room Air Making You Dumber?

quote [ That some people have difficulty thinking while breathing moderate levels of carbon dioxide suggests it may be worth taking a closer look at levels in offices and schools. ]

A little break never hurt anyone. Full in extended.


Is Conference Room Air Making You Dumber?
By Veronique GreenwoodAug. 3, 2015
You’re holed up with colleagues in a meeting room for two hours, hashing out a plan. Risks are weighed, decisions are made. Then, as you emerge, you realize it was much, much warmer and stuffier in there than in the rest of the office.

Small rooms can build up heat and carbon dioxide from our breath — as well as other substances — to an extent that might surprise you. And as it happens, a small body of evidence suggests that when it comes to decision making, indoor air may matter more than we have realized.

At least eight studies in the last seven years have looked at what happens specifically in a room accumulating carbon dioxide, a main ingredient in our exhalations. While the results are inconsistent, they are also intriguing.

They suggest that while the kinds of air pollution known to cause cancer and asthma remain much more pressing as public health concerns, there may also be pollutants whose most detrimental effects are on the mind, rather than the body.

So can you trust the decisions made in small rooms? How much does the quality of air indoors affect your cognitive abilities? And as our knowledge of indoor air’s effects grows, do we need to revise how we design and use our buildings?

Is it warm in here?

Buildings in the United States have grown better sealed in the last 50 years, helping reduce energy used in heating and cooling. That’s also made it easier for gasses and other substances released by humans and our belongings to build up inside.

Although indoor air quality is not as well monitored as the air outdoors, scientists and ventilation professionals have extensively monitored carbon dioxide indoors.

Higher CO2 levels — say, above 1,200 parts per million (ppm) — often indicate a low ventilation rate. Worrisome substances emitted by new furniture, office supplies and carpets could be accumulating in the air.

“It’s long been thought of as an indicator of how bad the air in a space might be,” said Brent Stephens, a professor of architectural engineering at Illinois Institute of Technology.

While other indoor air pollutants may be linked to respiratory problems and cancers, carbon dioxide itself generally has been considered harmless at these levels. But researchers have started re-examining that assumption.

Take a deep breath

Inhalation of carbon dioxide at much higher levels than you’d ever expect to see in a workplace has been found by biomedical researchers to dilate blood vessels in the brain, reduce neuronal activity, and decrease the amount of communication between brain regions.

But how much lower amounts, like those commonly found indoors, might affect the brain has not been studied much.

About ten years ago, William Fisk, a mechanical engineer at Lawrence Berkeley National Laboratory, and his colleagues put people in rooms where the carbon dioxide levels varied.

They exposed subjects for hours to concentrations as low as 600 ppm, fairly low for indoors, and as high as 2,500 ppm — a high but not astronomical amount that is probably not uncommon in crowded spaces. Carbon dioxide levels in some classrooms can be twice as high, Mr. Fisk noted. in a later article.

The scientists had their subjects take a problem-solving test that measured real-world productivity and decision-making skills, said Usha Satish, a professor of psychiatry at SUNY Upstate Medical University and a co-author of the research.

The test generates scores for broad attributes like basic strategy and initiative. The team found a strong relationship between seven of the nine headings they looked at and carbon dioxide levels.

The higher the carbon dioxide, the worse the test-takers did; at 2,500 ppm, their scores were generally much worse than at 1,000 ppm.

“It’s a very, very well-conceived study, with a control for everything,” said Pawel Wargocki, a professor of civil engineering at Technical University of Denmark. “They were very, very careful with the details of the design.”

Other scientists who read the study got interested in the subject. A team led by Harvard researchers published similar results in 2016.

They had office workers come into a mock workplace for six days and take the same kind of problem-solving test while exposed to various concentrations of both carbon dioxide and volatile organic compounds commonly found in office buildings.

As levels of carbon dioxide rose from 550 ppm to 945 ppm to 1400 ppm, subjects’ scores under most headings declined substantially. (Problem-solving ability also seemed to suffer as levels of volatile organic compounds rose.)

“What we saw were these striking, really quite dramatic impacts on decision-making performance, when all we did was make a few minor adjustments to the air quality in the building,” said Joseph Allen, a professor at the Harvard T.H. Chan School of Public Health who led the study.

“Importantly, this was not a study of unique, exotic conditions,” he added. “It was a study of conditions that could be obtained in most buildings, if not all.”

Breathe out

Not every study that sets out to check the relationship of indoor carbon dioxide to cognition finds a clear effect. Several studies using simpler tests of cognitive ability, like proofreading a text, have not shown such a shift.

Two studies using the same, more complex test on submarine crews and people meant to be representative of the NASA astronaut corps also did not turn up a connection, said Dr. Wargocki.

That doesn’t mean the studies that documented an effect were flawed. It could be easier to compensate for mental fuzziness on the simpler tests.

Or there may be an interaction between the stress of taking the more complex test — which takes the form of a simulation in which subjects must use their judgment and move quickly — and higher carbon dioxide levels that results in lower scores.

So far, studies have not measured subjects’ stress levels or taken other readings that could help explain why carbon dioxide only sometimes affects cognition. Submarine crews and astronauts are trained to make decisions under stress and may function normally under conditions that would perturb others.

What you can do

The question really is what is causing this effect, and under what circumstances does appear, Dr. Wargocki said.

That some people have difficulty thinking while breathing moderate levels of carbon dioxide suggests it may be worth taking a closer look at levels in offices and schools.

“In a study we did of a classroom, we consistently saw elevated levels of CO2 over 1,000 ppm over the course of an hourlong class,” said Shelly Miller, a professor of environmental engineering at the University of Colorado Boulder.

Many studies have also shown that increasing the ventilation rate in schools can raise children’s scores on tests and speed at tasks, and reduce absences.

What researchers have found in classrooms could be instructive for the small conference rooms at work where we hash out ideas and plans. None of these studies specifically looked at such spaces.

But the variations in performance at different levels of ventilation suggest that a typically recommended minimum air flow for a conference room, which is 6 cubic feet per minute per person, might not be optimal, said Dr. Allen.

Without a specialized sensor, you can’t realistically know how much carbon dioxide is building up while you hunker down in a small room for a long meeting. It might be a generally good practice, when possible, to crack open a door (or a window when possible, and when outside air pollution isn’t a major concern). Letting some fresh air in might even help keep good ideas flowing during your meeting, and prevent the discussion from getting too stale.
[SFW] [health] [+2]
[by Paracetamol@4:22amGMT]


Dienes said @ 1:45pm GMT on 24th May [Score:2 Funsightful]
This was not the article to read while boarding a plane for a conference.
Pandafaust said @ 3:59am GMT on 23rd May [Score:1 Interesting]
I am something like a canary in the coalmine here. I actually get drowsy and start nodding off despite herculean effort in some poorly ventilated rooms.
Interestingly - and this is a huge conceptual leap here that would need examination - but it describes the kind of neuronal change as "disorganised activity"/reduced cohesion.
This is also found in people with ADHD and "night owls" with sleep phase delay disorder - likely poor neuronal communication in the parts of the brain contributing to altertness and attentiveness at baseline in such individuals
I am the poster child sleep phase delay disorder person.
Connected issues? Another reason ADHD kids would do worse in a class than at home or outside?
steele said @ 5:44pm GMT on 22nd May
Current atmospheric CO2 levels are at about 415ppm. This is the foundation upon which all interior CO2 levels are based on and are going to raise as the atmosphere becomes more saturated. It's beginning to seem very unlikely we're going to avoid reaching atmospheric 600ppm as our states commit deeper and deeper into an adaptation ideology of handling global warming. We've already got things like O2 bars and canned air that commodify oxygen; I'm thinking it's just a matter of time before celebrities start outfitting their homes, carrying around their own Oxygen concentrators. At first, I'm sure it will be presented as a kind of trendy thing. I can already see Elon Musk smugly explaining how having his own source of fresh O2 helps him to be more innovative and productive. The Kardashians chatting on The View or some shit how it helps keep them looking young and ready for the world.

Meanwhile, the rest of us will be called greedy for wanting our brains to work.
donnie said[1] @ 8:46pm GMT on 22nd May [Score:1 Interesting]
It's not about more oxygen, it's about less CO2. Oxygen supplementation may be trendy, but what we really will need indoors are CO2 scrubbers. I expect within 50 years they'll join furnaces and AC units as a standard household appliance. That is, if we're fast enough to deploy them before we're too stupid to realize we need them.
steele said[1] @ 9:18pm GMT on 22nd May
True. Apologies, I thought o2 concentrators scrubbed co2 through zeolite but it looks like they just scrub out nitrogen.

Edit: Though now that I think about it. Eventually it's goign to become an oxygen problem. Hooray!
C18H27NO3 said @ 9:42pm GMT on 23rd May
But you have to admit it's a shame it's come to this, yes?
mechanical contrivance said @ 6:13pm GMT on 22nd May
We could just put a bunch of plants in our homes and offices.
steele said @ 7:14pm GMT on 22nd May
Maybe, but I wouldn't put too much hope in that once the numbers get high enough. This study uses 6 offices about 10-12 m2 each. 3 plants (in 11 inch pots) removed about 14.3 ppm per plant in an air conditioned setting and 32ppm per plant in a non air conditioned setting. It's obviously something we should definitely be doing already and I'm sure there will be more efficient plants that can be probably be used, but if we're talking about sequestering with 3-7 plants per 100ppm and co2 levels are getting up in the thousands you're going to run out of space for humans. Also, I'm wondering if we're going to run into an issue where plants start to drown in the CO2... Which is something we're starting to see happening in agriculture as nutrients drop in response to higher CO2.

Post a comment
[note: if you are replying to a specific comment, then click the reply link on that comment instead]

You must be logged in to comment on posts.

Posts of Import
If you got logged out, log back in.
4 More Years!
SE v2 Closed BETA
First Post
Subscriptions and Things
AskSE: What do you look like?

Karma Rankings